Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Hybrid organic‐inorganic heterogeneous catalytic interfaces, where traditional catalytic materials are modified with self‐assembled monolayers (SAMs), create promising features to control a wide range of catalytic processes through the design of dual organic‐inorganic active sites and the induced confinement effect. To provide a fundamental insight, we investigated CO2electroreduction into valuable C2chemicals (CO2RR‐to‐C2) over SAM‐modulated Cu. Our theoretical results show that 1/4 monolayer aminothiolates improve the stability, activity and selectivity of CO2RR‐to‐C2by: (1) decreasing surface energy to suppress surface reconstruction; (2) facilitating CO2activation and C−C coupling through dual organic‐inorganic (i. e., −NH, Cu) active sites; (3) promoting C−C coupling via confinement effects that enlarge the adsorption energy difference between CO*and COH*; (4) inducing local electric fields to Cu surface and changing its dipole moment and polarizability to be in favor of C−C coupling under electrode/electrolyte interfacial electric field.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
